Building Text and Speech Benchmark Datasets and Models for Low‐Resourced East African Languages: Experiences and Lessons

Author:

Nakatumba‐Nabende Joyce1ORCID,Babirye Claire2,Nabende Peter3,Tusubira Jeremy Francis2,Mukiibi Jonathan2,Wairagala Eric Peter2,Mutebi Chodrine2,Bateesa Tobius Saul2,Nahabwe Alvin2,Tusiime Hewitt2,Katumba Andrew4

Affiliation:

1. Department of Computer Science Makerere University Kampala Uganda

2. Makerere Artificial Intelligence Lab Makerere University Kampala Uganda

3. Department of Information Systems Makerere University Kampala Uganda

4. Department of Electrical and Computer Engineering Makerere University Kampala Uganda

Abstract

ABSTRACTAfrica has over 2000 languages; however, those languages are not well represented in the existing natural language processing ecosystem. African languages lack essential digital resources to effectively engage in advancing language technologies. There is a need to generate high‐quality natural language processing resources for low‐resourced African languages. Obtaining high‐quality speech and text data is expensive and tedious because it can involve manual sourcing and verification of data sources. This paper discusses the process taken to curate and annotate text and speech datasets for five East African languages: Luganda, Runyankore‐Rukiga, Acholi, Lumasaba, and Swahili. We also present results obtained from baseline models for machine translation, topic modeling and classification, sentiment classification, and automatic speech recognition tasks. Finally, we discuss the experiences, challenges, and lessons learned in creating the text and speech datasets.

Publisher

Wiley

Reference59 articles.

1. “Without English There Is No Future”: The Case of Language Attitudes and Ideologies in Uganda

2. L.MartinusandJ. Z.Abbott “A Focus on Neural Machine Translation for African Languages ” 2019 arXiv Preprint arXiv:1906.05685.

3. V.Marivate T.Sefara V.Chabalala et al. “Investigating an Approach for Low Resource Language Dataset Creation Curation and Classification: Setswana and Sepedi ” 2020 arXiv Preprint arXiv:2003.04986.

4. MasakhaNER: Named Entity Recognition for African Languages

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3