High throughput selection of organic cathode materials

Author:

López‐Carballeira Diego1ORCID,Polcar Tomáš1

Affiliation:

1. Department of Control Engineering, Faculty of Electrical Engineering Czech Technical University in Prague Prague Czech Republic

Abstract

AbstractEfficient and affordable batteries require the design of novel organic electrode materials to overcome the drawbacks of the traditionally used inorganic materials, and the computational screening of potential candidates is a very efficient way to identify prospective solutions and minimize experimental testing. Here we present a DFT high‐throughput computational screening where 86 million molecules contained in the PUBCHEM database have been analyzed and classified according to their estimated electrochemical features. The 5445 top‐performing candidates were identified, and among them, 2306 are expected to have a one‐electron reduction potential higher than 4 V versus (Li/Li+). Analogously, one‐electron energy densities higher than 800 Whkg−1 have been predicted for 626 molecules. Explicit calculations performed for certain materials show that at least 69 candidates with a two‐electron energy density higher than 1300 Whkg−1. Successful molecules were sorted into several families, some of them already commonly used electrode materials, and others still experimentally untested. Most of them are small systems containing conjugated CO, NN, or NC functional groups. Our selected molecules form a valuable starting point for experimentalists exploring new materials for organic electrodes.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3