Assess the Effectiveness of Multichannel Analysis of Surface Waves Method in Mapping Ancient Structures in Ultrashallow Aquatic Environments: The Case of Agioi Theodoroi, Greece

Author:

Kritikakis George1ORCID,Papadopoulos Nikos2ORCID,Andronikidis Nikos1,Simyrdanis Kleanthis2,Theodoulou Theotokis3

Affiliation:

1. Applied Geophysics Lab, School of Mineral Resources Engineering Technical University of Crete Chania Greece

2. Lab of Geophysical Satellite Remote Sensing and Archaeoenvironment, Institute for Mediterranean Studies Foundation for Research and Technology – Hellas Rethymno Greece

3. Ephorate of Underwater Antiquities Hellenic Republic, Ministry of Culture Heraklio Crete Greece

Abstract

ABSTRACTThe present geophysical research aims to evaluate the applicability of multichannel analysis of surface waves (MASW) on mapping ultrashallow underwater ancient masonry remnants. The work presents the analysis from a single seismic line using MASW and seismic refraction tomography (SRT) methods and its corresponding electrical resistivity tomography (ERT) section surveyed at the submerged prehistoric site of Agioi Theodoroi area located 10 km eastern of Heraklion, Crete, Greece. The 2D MASW velocity model exhibits significant correspondence with the resistivity structure extracted from the ERT data, showing lateral S‐wave velocity (Vs) variations at the positions where the high resistivity anomalies exist. The analysis of synthetic seismic data calculated from a respective model reproduced a comparable S‐wave velocity pseudo‐section with the real data. However, the investigated targets (submerged buried masonry) appear shallower and wider in MASW sections than in the real world and the corresponding synthetic models, due to insufficient vertical and horizontal resolution of this method. Surface waves travelling through the seafloor sediments (Scholte‐waves) demonstrate very low velocity values. This makes them suitable for the detection of shallow and relatively large (> 0.5 m) underwater manmade structures, providing the enhancement of MASW method resolution, by utilizing a high frequency (> 100 Hz) seismic source, recording short Scholte wavelengths (≤ 1 m) and using shorter (≤ 0.5 m) receiver spacing and array length. Consequently, the results of this work demonstrate the potential in employing conventional seismic techniques in the delineation of underwater antiquities and the revealing of the cultural dynamics in very shallow off‐shore archaeological sites.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3