The cholinergic pathway transmits signals of neuropeptide F to regulate feeding of Ostrinia furnacalis larvae

Author:

Jiang Xuemin1,Shi Jian1,Yang Haoran1,Zhao Zhangwu12ORCID

Affiliation:

1. Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection China Agricultural University Beijing China

2. College of Life Science, Institute of Life Science and Green Development Hebei University Baoding China

Abstract

AbstractBackgroundFeeding is the basis of animal survival and reproduction. In insects, the neuropeptide F (NPF), a homologous polypeptide of NPY in vertebrates, plays an important role in regulation of feeding behavior. However, relatively little has been known about the molecular mechanism of feeding.ResultsIn this study, we show that the cholinergic pathway is very important in signaling transmission of NPF feeding regulation in Ostrinia furnacalis larvae, in which the choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (vAChT) in presynaptic membrane and the nicotinic acetylcholine receptor (nAChR) in postsynaptic membrane are positively regulated by NPF, while the ace1 and ace2 encoding the acetylcholinesterase (AChE) are negatively regulated by NPF, leading to a balance of acetylcholine (ACh)‐the excitatory transmitter. More, the cholinergic pathway further transmits signaling to the downstream pathways of the phosphoInositide‐3 kinase (PI3K) and the cAMP responsive element binding protein (CREB), respectively.ConclusionThe cholinergic transmission, positively regulated by NPF, is involved in feeding of O. furnacalis larvae via downstream PI3K and the CREB pathways, respectively. The deexcitation of cell cholinergic pathway or inhibition of PI3K and CREB lead to decreases of larval feeding amount. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3