Influence of cesium bromide nanoparticles on the structural, optical, electrical, and antibacterial properties of polyvinyl alcohol/sodium alginate for biological applications

Author:

Diab N. S.1,Ragab H. M.1ORCID,Hamada Fatma A.12,Aziz Rosilah Ab1,Alghamdi Azzah M.3,Farea M. O.4

Affiliation:

1. Basic Sciences Department, Deanship of Preparatory Year University of Ha'il Hail Saudi Arabia

2. Botany Department, Faculty of Science Aswan University Aswan Egypt

3. Department of Physical Sciences University of Jeddah, College of Science Jeddah Saudi Arabia

4. Department of Physics, Faculty of Sciences Ibb University Ibb Yemen

Abstract

AbstractThis study investigates the use of organic and inorganic nanostructures to create innovative functional materials with applications in optoelectronics devices. Specifically, nanocomposite films were created by incorporating different concentrations of cesium bromide nanoparticles (5, 10, and 15 wt%) into a polyvinyl alcohol (PVA) and sodium alginate (SA) polymer blend (50/50 wt%) through a solution casting process. The impact of CsBr NPs on the structural, optical, and electrical properties of the virgin PVA/SA matrix was systematically investigated. x‐ray crystallography investigation verified the semicrystalline nature of the PVA/SA. FTIR spectra showed the main vibrational peaks of PVA/SA, with their intensity decreasing after the addition of cesium bromide. Scanning electron microscopy images showed the formation of aggregations and the increase of roughness for the PVA/SA‐CsBr NPs 15 wt% nanocomposite sample. The UV/vis. absorption spectrum showed a decrease in the energy gap values, which decreased from 4.25 to 3.89 eV in the direct transition and decreased from 4.12 to 3.77 eV in the indirect transition. Furthermore, the electrical conductivity and dielectric properties demonstrated improvement with increasing concentration of CsBr NPs. The antibacterial efficacy against Staphylococcus aureus and Escherichia coli exhibited an upward trend with an increase in CsBr nanoparticle concentration. Overall, the results suggest the promising potential of these nanocomposite films for applications in optoelectronics and biological applications.Highlights XRD shows that the amorphousity is increased after addition CsBr NPs. FT‐IR confirms the interactions/complexation between PVA/SA polymeric matrix filled with CsBr NPs. Optical energy gap is decreased with increasing CsBr concentrations. SEM images show the prepared samples have a smooth surface and only have a few defects. By adding CsBr NPs the electrical conductivity is tremendously improved.

Funder

University of Hail

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3