Does the fertile island effect in tamarisk nebkhas enhance in the northern Tarim Basin in the context of global warming?

Author:

Yin Chuanhua1ORCID,Shi Qiumei1ORCID,Zhou Yangming1,Zhang Ke2

Affiliation:

1. School of Tea and Food Science Wuyi University Wuyishan China

2. State Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Ürümqi China

Abstract

AbstractWith the intensification of global warming, uncertainty regarding ecosystem evolution trends in drylands has increased. The objective of this article was to test whether the desertification process of tamarisk shrubland was intensified by comparing fertile island effects and soil ecological stoichiometry characteristics at different time periods. The tamarisk shrubland in the “shrubland” and “shrub duneland” stages in the northern Tarim Basin was selected, and soil samples were collected from the tamarisk nabkhas and from the interspaces between tamarisk nebkhas at the 0‐ to 30‐cm soil layers in 2009 and 2018. Soil carbon (C), nitrogen (N), and phosphorous (P) were analyzed, and the C/N, C/P, and N/P ratios were calculated. In comparison with 2009, fertile island effects were completely collapsed in the shrub duneland stage, with no obvious changes in the shrubland stage in 2018. The average soil C/N ratio decreased from a value greater than 25 in both stages. The average value of soil C/P ratio was below 200 in the shrubland and shrub duneland stages, with almost no marked change after nine years. The soil N/P ratio in our study significantly increased in 2018 than in 2009, but the soil N/P ratio was still much less than 11.9. Significantly positive correlations were observed between the relative interaction index (RII) of soil organic carbon (SOC) and soil total nitrogen (TN) and the soil C/P and N/P ratios in the tamarisk nebkhas. These results suggested that (1) fertile island effects were positive in relation to soil stoichiometry in tamarisk nebkhas in most cases; (2) the desertification process was accelerated in the shrub duneland stage, with no obvious progress during the shrubland stage; and (3) the loss of soil C from the collapsed fertile islands could therefore accelerate global warming.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3