Study of selenium enrichment metabolomics in Bacillus subtilis BSN313 via transcriptome analysis

Author:

Ullah Asad123,Yin Xian12,Naveed Muhammad12,Aslam Sadar4,Chan Malik Wajid Hussain12ORCID,Bo Sun125,Wang Fenghuan12ORCID,Xu Bo6,Xu Baocai12,Yu Zhou12

Affiliation:

1. Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing China

2. China Food Flavor and Nutrition Health Innovation Center Beijing Technology and Business University Beijing China

3. Food and Marine Resources Research Center Pakistan Council of Scientific and Industrial Research Laboratories Complex Karachi Pakistan

4. State Key Laboratory of Tropical Oceanography South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China

5. Academy of National Food and Strategic Reserves Administration Beijing China

6. McIntire School of Commerce University of Virginia Charlottesville Virginia USA

Abstract

AbstractIn this study, the transcriptome analysis was practiced to identify potential genes of probiotic Bacillus subtilis BSN313 involved in selenium (Se) enrichment metabolism. The transcriptomic variation of the strain was deliberated in presence of three different sodium selenite concentrations (0, 3, and 20 μg/mL). The samples were taken at 1 and 13 h subsequent to inoculation of selenite and gene expression profiles in Se metabolism were analyzed through RNA sequencing. The gene expression levels of the pre log phase were lower than the stationary phase. It is because, the bacteria has maximum grown with high concentration of Se (enriched with organic Se), at stationary phase. Bacterial culture containing 3 μg/mL concentration of inorganic Se (sodium selenite) has shown highest gene expression as compared to no or high concentration of Se. This concentration (3 μg/mL) of sodium selenite (as Se) in the medium promoted the upregulation of thioredoxin reductase expression, whereas its higher Se concentration inhibited the formation of selenomethionine (SeMet). The result of 5 L bioreactor fermentation showed that SeMet was also detected in the fermentation supernatant as the growth entered in the late stationary phase and reached up to 857.3 ng/mL. The overall intracellular SeMet enriched content in BSN313 was extended up to 23.4 μg/g dry cell weight. The other two selenoamino acids (Se‐AAs), methyl‐selenocysteine, and selenocysteine were hardly detected in medium supernatant. From this study, it was concluded that SeMet was the highest content of organic Se byproduct biosynthesized by B. subtilis BSN313 strain in Se‐enriched medium during stationary phase. Thus, B. subtilis BSN313 can be considered a commercial probiotic strain that can be used in the food and pharmaceutical industries. This is because it can meet the commercial demand for Se‐AAs (SeMet) in both industries.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3