NMR, IR, Mössbauer and quantum chemical investigations of metalloporphyrins and metalloproteins

Author:

SANDERS LORI K.1,ARNOLD WILLIAM D.1,OLDFIELD ERIC1

Affiliation:

1. Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA

Abstract

We review contributions made towards the elucidation of CO and O2binding geometries in respiratory proteins. Nuclear magnetic resonance, infrared spectroscopy, Mössbauer spectroscopy, X-ray crystallography and quantum chemistry have all been used to investigate the Fe –ligand interactions. Early experimental results showed linear correlations between17O chemical shifts and the infrared stretching frequency (νCO) of the CO ligand in carbonmonoxyheme proteins and between the17O chemical shift and the13CO shift. These correlations led to early theoretical investigations of the vibrational frequency of carbon monoxide and of the13C and17O NMR chemical shifts in the presence of uniform and non-uniform electric fields. Early success in modeling these spectroscopic observables then led to the use of computational methods, in conjunction with experiment, to evaluate ligand-binding geometries in heme proteins. Density functional theory results are described which predict57Fe chemical shifts and Mössbauer electric field gradient tensors,17O NMR isotropic chemical shifts, chemical shift tensors and nuclear quadrupole coupling constants (e2qQ/h) as well as13C isotropic chemical shifts and chemical shift tensors in organometallic clusters, heme model metalloporphyrins and in metalloproteins. A principal result is that CO in most heme proteins has an essentially linear and untilted geometry (τ = 4 °, β = 7 °) which is in extremely good agreement with a recently published X-ray synchrotron structure. CO / O2discrimination is thus attributable to polar interactions with the distal histidine residue, rather than major Fe–C–O geometric distortions.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3