Modeling of Ultrasound Stimulation of Adolescent Pancreas for Insulin Release Therapy

Author:

Saab George1,Singh Tania1,Chen Andrew W.1,Sabetrasekh Parisa2,Sharma Karun3,Cleary Kevin3,Zderic Vesna1ORCID

Affiliation:

1. Department of Biomedical Engineering The George Washington University Washington DC USA

2. Department of Surgery The George Washington University School of Medicine and Health Sciences Washington DC USA

3. The Sheikh Zayed Institute for Pediatric Surgical Innovation Children's National Hospital Washington DC USA

Abstract

ObjectivesOur previous published studies have focused on safety and effectiveness of using therapeutic ultrasound (TUS) for treatment of type 2 diabetes mellitus (T2DM) in preclinical models. Here we present a set of simulation studies to explore potential ultrasound application schemes that would be feasible in a clinical setting.MethodsUsing the multiphysics modeling tool OnScale, we created two‐dimensional (2D) models of the human abdomen from CT images captured from one normal weight adolescent patient, and one obese adolescent patient. Based on our previous studies, the frequency of our TUS was 1 MHz delivered from a planar unfocused transducer. We tested five different insonation angles, as well as four ultrasound intensities combined with four different duty factors and five durations of application to explore how these variables effect the peak pressure and temperature delivered to the pancreas as well as surrounding tissue in the model.ResultsWe determined that ultrasound applied directly from the anterior of the patient abdomen at 5 W/cm2 delivered consistent acoustic pressures to the pancreas at the levels which we have previously found to be effective at inducing an insulin release from preclinical models.ConclusionsOur modeling work indicates that it may be feasible to non‐invasively apply TUS in clinical treatment of T2DM.

Funder

Children's National Hospital

National Institute of Biomedical Imaging and Bioengineering

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3