Forkhead box L2 is a target of miR‐133b and plays an important role in the pathogenesis of non‐small cell lung cancer

Author:

Li Juan123,Gao Lirong12,Wang Anqi12,Qian Huiwen1,Zhu Jianjie124,Ji Shundong5,Chen Jun6,Liu Zeyi124ORCID,Ji Cheng1

Affiliation:

1. Department of Pulmonary and Critical Care Medicine The First Affiliated Hospital of Soochow University Suzhou China

2. Suzhou Key Laboratory for Respiratory Diseases Suzhou China

3. Department of Respiratory and Critical Care Medicine Affiliated Hospital of Nantong University Nantong China

4. Institute of Respiratory Diseases Soochow University Suzhou China

5. Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology The First Affiliated Hospital of Soochow University Suzhou China

6. Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China

Abstract

AbstractBackgroundForkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non‐small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC.MethodsRNA and protein levels were detected by quantitative real‐time polymerase chain reaction (qRT–PCR) and western blotting assays. Cell proliferation was examined by cell counting kit‐8 (CCK‐8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR‐133b was verified by dual‐luciferase reporter assays. In vivo metastasis was monitored in the tail vein‐injected mice.ResultsFOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial–mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor‐β (TGF‐β)/Smad signaling pathway. miR‐133b directly targeted the 3′‐UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo.ConclusionsmiR‐133b downregulates FOXL2 by targeting the 3′‐UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF‐β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3