Artificial intelligence approaches for phenotyping heart failure in U.S. Veterans Health Administration electronic health record

Author:

Shao Yijun12,Zhang Sijian12,Raman Venkatesh K.13,Patel Samir S.12,Cheng Yan12,Parulkar Anshul45,Lam Phillip H.136,Moore Hans1237,Sheriff Helen M.12,Fonarow Gregg C.8,Heidenreich Paul A.910,Wu Wen‐Chih45,Ahmed Ali123,Zeng‐Treitler Qing12

Affiliation:

1. Center for Data Science and Outcomes Research Veterans Affairs Medical Center Washington DC USA

2. George Washington University Washington DC USA

3. Georgetown University Washington DC USA

4. Veterans Affairs Medical Center Providence RI USA

5. Brown University Providence RI USA

6. MedStar Washington Hospital Center Washington DC USA

7. Uniformed Services University Bethesda MD USA

8. University of California Los Angeles CA USA

9. Veterans Affairs Palo Alto Health Care System Palo Alto CA USA

10. Stanford University School of Medicine Stanford CA USA

Abstract

AbstractAimsHeart failure (HF) is a clinical syndrome with no definitive diagnostic tests. HF registries are often based on manual reviews of medical records of hospitalized HF patients identified using International Classification of Diseases (ICD) codes. However, most HF patients are not hospitalized, and manual review of big electronic health record (EHR) data is not practical. The US Department of Veterans Affairs (VA) has the largest integrated healthcare system in the nation, and an estimated 1.5 million patients have ICD codes for HF (HF ICD‐code universe) in their VA EHR. The objective of our study was to develop artificial intelligence (AI) models to phenotype HF in these patients.Methods and resultsThe model development cohort (n = 20 000: training, 16 000; validation 2000; testing, 2000) included 10 000 patients with HF and 10 000 without HF who were matched by age, sex, race, inpatient/outpatient status, hospital, and encounter date (within 60 days). HF status was ascertained by manual chart reviews in VA's External Peer Review Program for HF (EPRP‐HF) and non‐HF status was ascertained by the absence of ICD codes for HF in VA EHR. Two clinicians annotated 1000 random snippets with HF‐related keywords and labelled 436 as HF, which was then used to train and test a natural language processing (NLP) model to classify HF (positive predictive value or PPV, 0.81; sensitivity, 0.77). A machine learning (ML) model using linear support vector machine architecture was trained and tested to classify HF using EPRP‐HF as cases (PPV, 0.86; sensitivity, 0.86). From the ‘HF ICD‐code universe’, we randomly selected 200 patients (gold standard cohort) and two clinicians manually adjudicated HF (gold standard HF) in 145 of those patients by chart reviews. We calculated NLP, ML, and NLP + ML scores and used weighted F scores to derive their optimal threshold values for HF classification, which resulted in PPVs of 0.83, 0.77, and 0.85 and sensitivities of 0.86, 0.88, and 0.83, respectively. HF patients classified by the NLP + ML model were characteristically and prognostically similar to those with gold standard HF. All three models performed better than ICD code approaches: one principal hospital discharge diagnosis code for HF (PPV, 0.97; sensitivity, 0.21) or two primary outpatient encounter diagnosis codes for HF (PPV, 0.88; sensitivity, 0.54).ConclusionsThese findings suggest that NLP and ML models are efficient AI tools to phenotype HF in big EHR data to create contemporary HF registries for clinical studies of effectiveness, quality improvement, and hypothesis generation.

Funder

U.S. Department of Veterans Affairs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3