Fast and efficient inversion methods for crack sizing using Bz magnetic signature

Author:

Barrarat Fatima12ORCID,Bensaid Samir3ORCID,Rayane Karim4ORCID,Helifa Bachir1ORCID,Lefkaier Iben Khaldoun1ORCID,Zorig Assam5

Affiliation:

1. Laboratoire de Physique des Matériaux Université de Laghouat Laghouat Algeria

2. École Normale Supérieure de Laghouat Laghouat Algeria

3. Laboratoire des Matériaux et du Développement Durable Université de Bouira Bouira Algeria

4. Laboratoire de Génie des Procédés Université de Laghouat Laghouat Algeria

5. Laboratoire de Génie Électrique Université de M'sila M'sila Algeria

Abstract

AbstractFast estimation is a critical feature of the proposed modeling approach as a “forward” fast solver that has a key role in solving the “inverse” problem involved in crack sizing, especially for real‐time applications. To this end, two different inversion methods have been proposed to estimate the crack depth. The first one uses an interpolation model of the 3D direct model simulation data. The second approach is based on artificial neural networks (ANN). In this article, the rotating uniform eddy current (RUEC) probe is used to detect the normal magnetic component Bz which is defined as the characteristic signal for reconstructing the crack length and depth concurrently. Using the first approach, The Bz characteristic 3D surface is presented, and this can be modeled by a fitted polynomial interpolation equation. Thus, the crack depth can be inverted using this equation referring to the experimental or simulated Bz signal and the crack length. The ANN is outlined to determine the crack depth based on the simulated Bz signature. The move from the first inversion method to the second was flexible and useful, in which the interpolation model is used as a defect signal generator for fast building of a large and efficient database for ANN training. Both of the proposed methods proved the objectivity and accuracy of the inversion results and offered more robust engineering support for automated NDT, reducing production time and increasing productivity.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3