RumexWeeds: A grassland dataset for agricultural robotics

Author:

Güldenring Ronja1ORCID,van Evert Frits K.2,Nalpantidis Lazaros1

Affiliation:

1. Technical University of Denmark Kongens Lyngby Denmark

2. Wageningen University & Research Wageningen The Netherlands

Abstract

AbstractComputer vision can lead toward more sustainable agricultural production by enabling robotic precision agriculture. Vision‐equipped robots are being deployed in the fields to take care of crops and control weeds. However, publicly available agricultural datasets containing both image data as well as data from navigational robot sensors are scarce. Our real‐world dataset RumexWeeds targets the detection of the grassland weeds: Rumex obtusifolius L. and Rumex crispus L. RumexWeeds includes whole image sequences instead of individual static images, which is rare for computer vision image datasets, yet crucial for robotic applications. It allows for more robust object detection, incorporating temporal aspects and considering different viewpoints of the same object. Furthermore, RumexWeeds includes data from additional navigational robot sensors—GNSS, IMU and odometry—which can increase robustness, when additionally fed to detection models. In total the dataset includes 5510 images with 15,519 manual bounding box annotations collected at three different farms and four different days in summer and autumn 2021. Additionally, RumexWeeds includes a subset of 340 ground truth pixels‐wise annotations. The dataset is publicly available at https://dtu-pas.github.io/RumexWeeds/. In this paper we also use RumexWeeds to provide baseline weed detection results considering a state‐of‐the‐art object detector; in this way we are elucidating interesting characteristics of the dataset.

Funder

European Commission

European GNSS Agency

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Reference42 articles.

1. Automated weed classification with local pattern‐based texture descriptors;Ahmed F.;The International Arab Journal of Information Technology,2014

2. Anken T. Šeatovc D. Holpp M. Venn W.&Kutterer H.(2010)Automatic detection of broad‐leaved dock in grassland. arXiv preprint.

3. A high‐resolution, multimodal data set for agricultural robotics: A Ladybird 's‐eye view of Brassica

4. Berman M.&Blaschko M.B.(2017)Optimization of the Jaccard index for image segmentation with the Lovász hinge.CoRR abs/1705.08790.

5. Binch A. Cooke N.&Fox C.W.(2018)Rumex and urtica detection in grassland by UAV. In:14th International Conference on Precision Agriculture.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3