The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum

Author:

Kim KumChol12,Gao Han1,Li Chengjun1ORCID,Li Bin1ORCID

Affiliation:

1. Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences Nanjing Normal University Nanjing China

2. Department of Life‐Science University of Science Pyongyang Democratic People's Republic of Korea

Abstract

BACKGROUNDReduced glutathione (GSH) synthesis is vital for redox homeostasis, cell‐cycle regulation and apoptosis, and immune function. The glutamate–cysteine ligase catalytic subunit (Gclc) is the first and rate‐limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum.RESULTSIn this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490‐fold). Furthermore, RNA interference‐mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20‐hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01).CONCLUSIONOur results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3