A simple method for rapid removal of the memory effect in cavity ring‐down spectroscopy water isotope measurements

Author:

Keinan Jonathan12ORCID,Goldsmith Yonaton1ORCID

Affiliation:

1. Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel

2. Geological Survey of Israel Jerusalem Israel

Abstract

RationaleThe accuracy determined in the routine analysis of water isotopes (δ17O, δ18O, δ2H) using cavity ring‐down spectroscopy is greatly affected by the memory effect (ME), a sample‐to‐sample carryover that biases measurements. This study aims to develop a simple method that rapidly removes the ME.MethodsWe developed a method, designed for the Picarro L2140‐i, that removes the ME by injecting small amounts of water with an extreme isotopic value (“kick”) in the opposite direction of the ME. We conducted 11 experiments to identify the optimal kick for pairs of isotopically enriched and depleted samples. Once quantified, the optimal kick was used to create an ME‐free, unbiased calibration curve, which was verified using international and internal lab standards.ResultsOur kick method removes the ME very efficiently in half the time it takes for experiments without a kick. The optimal number of kick injections required to minimize stabilization time between standards of different compositions is three injections of δ2H ≈ −1000‰ water per a 100‰ difference between standards. Three runs of routine measurements using the kick method resulted in uncertainties of 0.03‰, 0.2‰, and 5 permeg for δ18O, δ2H, and 17O‐excess, respectively.ConclusionsThis study demonstrates a new method for rapidly removing the ME. Our kick protocol is a readily available, cheap, and efficient approach to reduce instrumental bias and improve measurement accuracy.

Funder

Israel Science Foundation

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3