Deep generative model‐based generation method of stochastic structural planes of rock masses in tunnels

Author:

Meng Han1,Mei Gang1ORCID,Qi Xiaoyu1,Xu Nengxiong1,Peng Jianbing12

Affiliation:

1. School of Engineering and Technology China University of Geosciences (Beijing) Beijing China

2. School of Geological Engineering and Geomatics Chang'an University Xi'an China

Abstract

Tunnels stand as indispensable pillars of transportation infrastructure, assuming a central and transformative role in fostering the sustainable evolution of urban. The excavation process of tunnels presents a spectrum of geological challenges, encompassing the potential for instability and collapse. Ensuring the stability of the tunnel is a top priority in tunnel construction. The destabilization leading to collapse in certain tunnels is intricately connected to the structural planes of the rock mass. Accurately obtaining the distribution of structural planes within the rock mass is the necessary basis for maintaining the stability of the tunnel. The conventional Monte Carlo method generates each parameter of stochastic structural planes separately without considering the correlations between the parameters. To address this limitation, we propose a stochastic structural plane generation method based on deep generative model (DGM). The model takes the measured factual structural plane data as input, and the neural network realizes the generation of structural plane data with automatic learning of the distribution law of structural planes and the correlations between each parameters without assuming the probability distribution of stochastic structural planes in advance. This method has been used for stochastic structural plane generation of the rock mass in the Yuelongmen tunnel located in Mianyang City, Sichuan Province. The validation results show that the proposed DGM‐based method automatically captures the correlation between structural plane parameters while ensuring the greater accuracy of the generated structural planes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3