Multi‐objective Firefly algorithm for enhanced balanced exploitation and exploration capabilities

Author:

Liu Lei1ORCID

Affiliation:

1. School of Electronic and Information Engineering Jiangxi Industry Polytechnic College Nanchang China

Abstract

SummaryThe multi‐objective Firefly algorithm has a single strategy for finding the best in the evolutionary process, which is easy to fall into the local optimum and leads to poor distribution and convergence of the population. To address this problem, this article proposes an enhanced multi‐objective Firefly algorithm with balanced exploitation and exploration capability (MOFA‐EBE). The convergence evaluation index is introduced to divide the population into two sub‐regions according to the difference of convergence, namely, the development area and exploration area, and each sub‐region is assigned its learning strategy to maximize the utilization of population information. Since the individuals in the development region are far from the Pareto front, the Lévy flights mechanism is added to expand the search area and make them approach the Pareto front quickly under the guidance of the convergent global optimal particles to improve the convergence of the algorithm; since the individuals in the exploration region already have better convergence, they are assigned the most diverse and convergent global individuals for guidance and the Cauchy The variation mechanism is added to the Pareto frontier for continuous exploration to improve the distributivity of the algorithm. In the experimental part, the algorithm is compared with some multi‐objective optimization algorithms on 19 benchmark test functions, and the effectiveness of the added strategy of MOFA‐EBE is verified. The results show that MOFA‐EBE is significantly superior to several other algorithms in terms of improving population convergence and distributivity.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3