Modulation of Pacific decadal oscillation on the relationship between El Niño–Southern Oscillation and rainy season onset over the Indo‐China Peninsula

Author:

Wang Fen12ORCID,Luo Xian12ORCID,Li Siyu12,Wu Xinqu12

Affiliation:

1. Institute of International Rivers and Eco‐security Yunnan University Kunming China

2. Yunnan Key Laboratory of International Rivers and Transboundary Eco‐security Yunnan University Kunming China

Abstract

AbstractMonsoon precipitation variability over the Indo‐China Peninsula (ICP) has become more complicated affected by global warming. In this study, the modulation of Pacific decadal oscillation (PDO) on the relationship between El Niño–Southern Oscillation (ENSO) and the rainy season onset over the ICP were investigated. The results showed that the ICP rainy season onset were predominantly correlated with winter sea surface temperature anomalies (SSTAs) in the East Pacific Ocean, with late and early onsets following El Niño and La Niña events, respectively. During the warm and cold PDO phase, the correlations tended to be substantially strengthened and weakened, respectively. Further analysis indicates that PDO significantly influenced the effects of ENSO on the ICP rainy season onset by modulating SSTAs and low‐level wind fields. During the El Niño events, abnormal easterlies over the Bay of Bengal (BoB) and southern ICP suppressed water vapour transporting to the ICP, which may be related to the zonal SST anomaly gradient between the Indian Ocean and the Northwest Pacific Ocean. When the El Niño occurred during the warm PDO phase, the rainy season onsets were later. The anomalous easterlies became stronger corresponds to the increasing zonal sea surface temperature anomaly (SSTA) gradient between the Indian Ocean and the Northwest Pacific Ocean. There was no significant anomaly on the rainy season onset during the cold PDO phase. During the La Niña events, the abnormal westerlies in BOB accelerated water vapour transport, and the rainy season onset were earlier during the warm and cold PDO phase. The modulating effects of PDO on La Niña were less than those on El Niño. These results suggest that the predictability of rainy season onset over the ICP can be improved through PDO and thus help agricultural planning and water resources management.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3