Quantifying the effect of a retrogressive thaw slump on soil freeze–thaw erosion in permafrost regions on the Qinghai–Tibet Plateau, China

Author:

Jiao Chenglong12ORCID,Wang Yizhao3,Shan Yi4,He Peifeng12,He Junlin12

Affiliation:

1. South China Institution of Geotechnical Engineering School of Civil Engineering and Transportation, South China University of Technology Guangzhou PR China

2. State Key Laboratory of Subtropical Building Science South China University of Technology Guangzhou PR China

3. Guangzhou Metro Design Research Institute Co., Ltd. Guangzhou PR China

4. School of Civil Engineering Guangzhou University Guangzhou PR China

Abstract

AbstractThermokarst terrain is developing at an accelerating pace in the ice‐rich permafrost on the QinghaiTibet Plateau (QTP), China, and the most dramatic of  these terrain‐altering thermokarsts is retrogressive thaw slump (RTS). The freeze–thaw erosion (FTE) impacts are sharply increasing on the Plateau due to RTS, especially as a result of  the migration of fine sediments in cold climates, these impacts are still not quantified due to the limitation of hydro‐thermal‐mass transport laws in RTS development. Moreover, it is difficult to assess the impact of RTS on the ecology and environment, especially on soil erosion. This study developed a heat–water‐mass transport coupled model of a RTS in the Beiluhe River Region on the QTP, considering the actual topography, water‐ice phase change, latent heat, and surface heat exchange layer. Based on the observed data of ground temperature, unfrozen water content, and heat flux, the coupled model herein is practicable for presenting the geotemperature regime and groundwater flow in the RTS area, thereby quantifying the ice‐rich permafrost thaw and mass wasting. The results presented indicate that: (1) the seepage velocity of the superficial zone (0–1.5 m depth) is two orders of magnitude higher than that of the permafrost table; (2) the mean ice‐rich permafrost thaw volume was 13.4 m2 from 2016 to 2021; and (3) the cumulative mass transport volume was 22 m2 from July 2020 to September 2021. In addition, the relation between the FTE (shown as the migration of sediments) and the amount of ground ice ablation can be fitted by an exponential equation. This work proposes a reliable method for quantifying the effect of FTE and is helpful to assess the eco‐environmental impacts of RTS.

Funder

Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3