Neural network guided sinogram‐domain iterative algorithm for artifact reduction

Author:

Zeng Gengsheng L.12

Affiliation:

1. Department of Computer Science Utah Valley University Salt Lake City Utah USA

2. Department of Radiology and Imaging Sciences University of Utah Salt Lake City Utah USA

Abstract

AbstractBackgroundArtifact reduction or removal is a challenging task when the artifact creation physics are not well modeled mathematically. One of such situations is metal artifacts in x‐ray CT when the metallic material is unknown, and the x‐ray spectrum is wide.PurposeA neural network is used to act as the objective function for iterative artifact reduction when the artifact model is unknown.MethodsA hypothetical unpredictable projection data distortion model is used to illustrate the proposed approach. The model is unpredictable, because it is controlled by a random variable. A convolutional neural network is trained to recognize the artifacts. The trained network is then used to compute the objective function for an iterative algorithm, which tries to reduce the artifacts in a computed tomography (CT) task. The objective function is evaluated in the image domain. The iterative algorithm for artifact reduction is in the projection domain. A gradient descent algorithm is used for the objective function optimization. The associated gradient is calculated with the chain rule.ResultsThe learning curves illustrate the decreasing treads of the objective function as the number of iterations increases. The images after the iterative treatment show the reduction of artifacts. A quantitative metric, the Sum Square Difference (SSD), also indicates the effectiveness of the proposed method.ConclusionThe methodology of using a neural network as an objective function has potential value for situations where a human developed model is difficult to describe the underlying physics. Real‐world applications are expected to be benefit from this methodology.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3