Affiliation:
1. Department of Materials Science and Engineering National University of Singapore Singapore Singapore
2. State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
3. Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR) Singapore Singapore
Abstract
AbstractAqueous zinc‐ion batteries (ZIBs) are regarded as among the most promising candidates for large‐scale grid energy storage, owing to their high safety, low costs, and environmental friendliness. Over the past decade, vanadium oxides, which are exemplified by V2O5, have been widely developed as a class of cathode materials for ZIBs, where the relatively high theoretical capacity and structural stability are among the main considerations. However, there are considerable challenges in the construction of vanadium‐based ZIBs with high capacity, long lifespan, and excellent rate performance. Simple widenings of the interlayer spacing in the layered vanadium oxides by pre‐intercalations appear to have reached their limitations in improving the energy density and other key performance parameters of ZIBs, although various metal ions (Na+, Ca2+, and Al3+) and even organic cations/groups have been explored. Herein, we discuss the advances made more recently, and also the challenges faced by the high‐performance vanadium oxides (V2O5‐based) cathodes, where there are several strategies to improve their electrochemical performance ranging from the new structural designs down to sub‐nano‐scopic/molecular/atomic levels, including cation pre‐intercalation, structural water optimization, and defect engineering, to macroscopic structural modifications. The key principles for an optimal structural design of the V2O5‐based cathode materials for high energy density and fast‐charging aqueous ZIBs are examined, aiming at paving the way for developing energy storage designed for those large scales, high safety, and low‐cost systems.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献