Uncertainty analysis–forecasting system based on decomposition–ensemble framework for PM2.5 concentration forecasting in China

Author:

Qu Zongxi1ORCID,Hao Xiaogang2,Zhao Fazhen1,Niu Chunhua1ORCID

Affiliation:

1. School of Management Lanzhou University Lanzhou China

2. Clinical College of Traditional Chinese Medicine Gansu University of Chinese Medicine Lanzhou China

Abstract

AbstractPractical analysis and forecasting of PM2.5 concentrations is complex and challenging owing to the volatility and non‐stationarity of PM2.5 series. Most previous studies mainly focused on deterministic predictions, whereas the uncertainty in the prediction is not considered. In this study, a novel uncertainty analysis–forecasting system comprising distribution function analysis, intelligent deterministic prediction, and interval prediction is designed. Based on the characteristics of PM2.5 series, 16 hybrid models composed of various distribution functions and swarm optimization algorithms are selected to determine the exact PM2.5 distribution. Subsequently, a hybrid deterministic forecasting model based on a novel decomposition–ensemble framework is established for PM2.5 prediction. Regarding uncertainty analysis, interval prediction is established to provide uncertain information required for decision–making based on the optimal distribution functions and deterministic prediction results. PM2.5 concentration series obtained from three cities in China are used to conduct an empirical study. The empirical results show that the proposed system can achieve better prediction results than other comparable models as well as provide meaningful and practical quantification of future PM trends. Hence, the system can provide more constructive suggestions for government administrators and the public.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3