Supervised structural learning of semiparametric regression on high‐dimensional correlated covariates with applications to eQTL studies

Author:

Liu Wei1,Lin Huazhen12ORCID,Liu Li3,Ma Yanyuan4,Wei Ying5,Li Yi6

Affiliation:

1. Center of Statistical Research and School of Statistics Southwestern University of Finance and Economics Chengdu China

2. New Cornerstone Science Laboratory Shenzhen China

3. School of Mathematics and Statistics Wuhan University Wuhan China

4. Department of Statistics Penn State University, University Park State College Pennsylvania

5. Department of Biostatistics Mailman School of Public Health, Columbia University New York New York USA

6. Department of Biostatistics University of Michigan Ann Arbor Michigan USA

Abstract

Expression quantitative trait loci (eQTL) studies utilize regression models to explain the variance of gene expressions with genetic loci or single nucleotide polymorphisms (SNPs). However, regression models for eQTL are challenged by the presence of high dimensional non‐sparse and correlated SNPs with small effects, and nonlinear relationships between responses and SNPs. Principal component analyses are commonly conducted for dimension reduction without considering responses. Because of that, this non‐supervised learning method often does not work well when the focus is on discovery of the response‐covariate relationship. We propose a new supervised structural dimensional reduction method for semiparametric regression models with high dimensional and correlated covariates; we extract low‐dimensional latent features from a vast number of correlated SNPs while accounting for their relationships, possibly nonlinear, with gene expressions. Our model identifies important SNPs associated with gene expressions and estimates the association parameters via a likelihood‐based algorithm. A GTEx data application on a cancer related gene is presented with 18 novel eQTLs detected by our method. In addition, extensive simulations show that our method outperforms the other competing methods in bias, efficiency, and computational cost.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science Foundation

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3