Affiliation:
1. Department of Civil and Environmental Engineering California Polytechnic State University San Luis Obispo California USA
2. Department of Civil and Natural Resources Engineering University of Canterbury Christchurch New Zealand
Abstract
AbstractStudies in the literature have shown that P‐delta () effects are highly influenced by the hysteretic characteristics of a structural system. However, international buildings and bridge codes prescribe ‐induced amplification factors, limits for negligible effects and limits for dynamic instability that neglect this influence. As a result, different margins of safety against actions are currently specified for different structural systems, with steel structures, for example, presenting reduced margins of safety with respect to concrete structures. Adopting a sub‐set of the PEER earthquake record database composed of 1964 earthquake records, this paper presents a statistical analysis of displacement amplification ratios for systems with different hysteretic models, fundamental periods and ductility levels. In terms of both elastic and inelastic stability coefficients, limit values of the stability coefficient for negligible effects and dynamic instability are proposed for the most common structural typologies, such as steel, well and poorly detailed reinforced concrete, and self‐centering structures. Analytical estimates of the median, 84th and 98th percentile values of the displacement amplification that take into account the combined effect of stability coefficient, ductility level and hysteretic properties are proposed.
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献