Assessment of bioactive compounds in faba bean using infrared spectroscopy

Author:

Johnson Joel B.1ORCID,Walsh Kerry B.1,Naiker Mani1

Affiliation:

1. School of Health, Medical and Applied Sciences Central Queensland University North Rockhampton Queensland Australia

Abstract

AbstractFaba bean (Vicia faba) is growing in popularity in Australia, partly due to its higher levels of health‐benefiting compounds compared to other grain crops. This study investigated infrared spectroscopy for predicting levels of bioactive compounds such as antioxidants and phenolics in faba bean flour. Calibration models were performed on 60 samples of faba bean, comprising 10 varieties grown across two field locations in 1 year. For model validation, an independent test set comprising the same varieties grown in a different year was utilised. Near‐infrared spectroscopy (NIRS) showed promise for the prediction of total phenolic content, with an R2pred of 0.66 and root mean square error of prediction (RMSEP) of 76 mg/100 g. Similarly, prediction of ferric reducing antioxidant power, a measure of antioxidant activity, gave an R2pred of 0.59 and RMSEP of 87 mg/100 g. Additionally, moving window optimisation was used to determine the most important wavelength region for the prediction of these analytes. Fourier transform infrared spectroscopy did not yield any suitable models for the analytes investigated. Although the NIRS models developed were not capable of exactly quantifying phenolic or antioxidant content, infrared spectroscopy appears useful for rapidly discriminating between samples containing high and low levels of phenolics or antioxidant compounds. With further refinement, this technique could potentially be applied for the quality assurance of phenolic content or antioxidant capacity in faba bean seeds.

Funder

Australian Government

Central Queensland University

Publisher

Wiley

Subject

Plant Science,Food Science

Reference52 articles.

1. Phenolic compound explorer: A mid-infrared spectroscopy database

2. AEGIC. (2017).Australian pulses: Quality versatility nutrition. Retrieved fromhttps://www.aegic.org.au

3. AEGIC. (2021).Australian pulses: Quality versatility nutrition. Retrieved fromhttps://aegic.org.au/wp-content/uploads/2021/03/AEGIC-Grain-Note-pulses_LR-1.pdf

4. Nondestructive measurement of anthocyanin in intact soybean seed using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) spectroscopy

5. Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3