Adapting to change: Exploring the consequences of climate‐induced host plant shifts in two specialist Lepidoptera species

Author:

Bovay Baptiste1ORCID,Descombes Patrice2,Chittaro Yannick3,Glauser Gaëtan4,Nomoto Hanna1,Rasmann Sergio1ORCID

Affiliation:

1. Faculty of Science, Institute of Biology University of Neuchâtel Neuchatel Switzerland

2. Département de Botanique Muséum cantonal des sciences naturelles Lausanne Switzerland

3. Info Fauna Neuchatel Switzerland

4. Faculty of Science, Neuchâtel Platform of Analytical Chemistry University of Neuchâtel Neuchatel Switzerland

Abstract

AbstractAsynchronous migration of insect herbivores and their host plants towards higher elevations following climate warming is expected to generate novel plant–insect interactions. While the disassociation of specialised interactions can challenge species' persistence, consequences for specialised low‐elevation insect herbivores encountering novel high‐elevation plants under climate change remain largely unknown. To explore the ability of two low‐elevation Lepidoptera species, Melitaea celadussa and Zygaena filipendulae, to undergo shifts from low‐ to high‐elevation host plants, we combined a translocation experiment performed at two elevations in the Swiss Alps with experiments conducted under controlled conditions. Specifically, we exposed M. celadussa and Z. filipendulae to current low‐ and congeneric high‐elevation host plants, to test how shifts in host plant use impact oviposition probability, number of eggs clutches laid, caterpillar feeding preference and growth, pupation rate and wing size. While our study shows that both M. celadussa and Z. filipendulae can oviposit and feed on novel high‐elevation host plants, we reveal strong preferences towards ovipositing and feeding on current low‐elevation host plants. In addition, shifts from current low‐ to novel high‐elevation host plants reduced pupation rates as well as wing size for M. celadussa, while caterpillar growth was unaffected by host plant identity for both species. Our study suggests that populations of M. celadussa and Z. filipendulae have the ability to undergo host plant shifts under climate change. However, these shifts may impact the ability of populations to respond to rapid climate change by altering developmental processes and morphology. Our study highlights the importance of considering altered biotic interactions when predicting consequences for natural populations facing novel abiotic and biotic environments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3