Effects of dietary nutrients of the gut microbiota in the long‐tailed dwarf hamster (Cricetulus longicaudatus)

Author:

Cao Kanglin1ORCID,Tao Mengfan1ORCID,Pu Xinsheng1,Hou Yu1,Ren Yue1ORCID,Liu Wei2,Yang Xin'gen1

Affiliation:

1. Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection Shanxi Agricultural University Taiyuan China

2. Shanxi Forestry and Grassland General Engineering Station Taiyuan China

Abstract

AbstractGut microbiota is a key factor in maintaining the dietary and metabolic homeostasis of small mammals. To explore the effect of diet on the gut microbiota of the long‐tailed dwarf hamster (Cricetulus longicaudatus), 16S rDNA high‐throughput sequencing combined with bioinformatics analysis was used to investigate the succession process of the gut microbiota and effects of different nutrients on the composition and function of the gut microbiota. The results showed that diet structure can significantly influence the composition and function of the gut microbiota, as well as the health of animals. The highest relative abundance of Firmicutes, and the simplest co‐occurrence network occurred in the wild. Whereas the relative abundance of Bacteroidetes is higher and the most complex network structure was observed after 35 days of same feeding. Compared to the other four groups, the relative abundance of Firmicutes in the wheat + peanuts (WP) group was the highest after 35 days of different feeding, and the highest relative abundance of Bacteroidetes occurred in the wheat‐only (WH) group. Bacteroidetes exhibit carbohydrate degradation activity, and Firmicutes are strongly associated with fat uptake. We also found a significant positive correlation between Lactobacillus and body weight, indicating that Lactobacillus plays a crucial role in modulating fat intake and weight management. This study provides empirical evidence to facilitate the understanding of the co‐evolutionary dynamics between C. longicaudatus and their gut microbiota and establishes a theoretical foundation for utilizing gut microbiota in rodent control.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3