Pollinator competition and the contingency of nectar depletion during an early spring resource pulse

Author:

Sponsler Douglas B.1ORCID,Hamilton Murray1,Wiesneth Michael1,Steffan‐Dewenter Ingolf1

Affiliation:

1. Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg Würzburg Germany

Abstract

AbstractConcerns about competition between pollinators are predicated on the assumption of floral resource limitation. Floral resource limitation, however, is a complex phenomenon involving the interplay of resource production by plants, resource demand by pollinators, and exogenous factors—like weather conditions—that constrain both plants and pollinators. In this study, we examined nectar limitation during the mass flowering of rosaceous fruit trees in early spring. Our study was set in the same region as a previous study that found severe nectar limitation in summer grasslands. We used this seasonal contrast to evaluate two alternative hypotheses concerning the seasonal dynamics of floral resource limitation: either (H1) rates of resource production and consumption are matched through seasonal time to maintain a consistent degree of resource limitation, or (H2) a mismatch of high floral resource production and low pollinator activity in early spring creates a period of relaxed resource limitation that intensifies later in the year. We found generally much lower depletion in our spring study compared to the near 100% depletion found in the summer study, but depletion rates varied markedly through diel time and across sampling days, with afternoon depletion rates sometimes exceeding 80%. In some cases, there were also pronounced differences in depletion rates across simultaneously sampled floral species, indicating different degrees of nectar exploitation. These findings generally support the seasonal mismatch hypothesis (H2) but underscore the complex contingency of nectar depletion. The challenge of future work is to discern how the fluctuation of resource limitation across diel, inter‐diel, and seasonal time scales translates into population‐level outcomes for pollinators.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3