Affiliation:
1. Department of Entomology Virginia Tech Blacksburg Virginia USA
2. Department of Fish and Wildlife Conservation Virginia Tech Blacksburg Virginia USA
3. Center for Emerging, Zoonotic and Arthropod‐Borne Pathogens Virginia Tech Blacksburg Virginia USA
4. Global Change Center Virginia Tech Blacksburg Virginia USA
5. The Kellogg Center for Philosophy, Politics, and Economics Virginia Tech Blacksburg Virginia USA
Abstract
AbstractPathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross‐species spillover transmission. Using a rodent–ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent–ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high‐consequence zoonotic pathogen with documented animal‐to‐animal, animal‐to‐human, and human‐to‐human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus.
Funder
Division of Intramural Research
Institute for Critical Technologies and Applied Science, Virginia Tech
National Science Foundation