The effect of terrain on the fine‐scale genetic diversity of sub‐Antarctic Collembola: A landscape genetics approach

Author:

Monsanto Daniela Marques1ORCID,Hedding David William2ORCID,Durand Sandra2ORCID,Parbhu Shilpa Pradeep1ORCID,Adair Matthew Grant1ORCID,Emami‐Khoyi Arsalan13ORCID,Teske Peter Rodja1ORCID,Jansen van Vuuren Bettine1ORCID

Affiliation:

1. Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation University of Johannesburg Auckland Park South Africa

2. Department of Geography University of South Africa Pretoria South Africa

3. Institute of Wildlife Management and Nature Conservation Hungarian University of Agriculture and Life Sciences Gödöllő Hungary

Abstract

AbstractBiodiversity patterns are shaped by the interplay between geodiversity and organismal characteristics. Superimposing genetic structure onto landscape heterogeneity (i.e., landscape genetics) can help to disentangle their interactions and better understand population dynamics. Previous studies on the sub‐Antarctic Prince Edward Islands (located midway between Antarctica and Africa) have highlighted the importance of landscape and climatic barriers in shaping spatial genetic patterns and have drawn attention to the value of these islands as natural laboratories for studying fundamental concepts in biology. Here, we assessed the fine‐scale spatial genetic structure of the springtail, Cryptopygus antarcticus travei, which is endemic to Marion Island, in tandem with high‐resolution geological data. Using a species‐specific suite of microsatellite markers, a fine‐scale sampling design incorporating landscape complexity and generalised linear models (GLMs), we examined genetic patterns overlaid onto high‐resolution digital surface models and surface geology data across two 1‐km sampling transects. The GLMs revealed that genetic patterns across the landscape closely track landscape resistance data in concert with landscape discontinuities and barriers to gene flow identified at a scale of a few metres. These results show that the island's geodiversity plays an important role in shaping biodiversity patterns and intraspecific genetic diversity. This study illustrates that fine‐scale genetic patterns in soil arthropods are markedly more structured than anticipated, given that previous studies have reported high levels of genetic diversity and evidence of genetic structing linked to landscape changes for springtail species and considering the homogeneity of the vegetation complexes characteristic of the island at the scale of tens to hundreds of metres. By incorporating fine‐scale and high‐resolution landscape features into our study, we were able to explain much of the observed spatial genetic patterns. Our study highlights geodiversity as a driver of spatial complexity. More widely, it holds important implications for the conservation and management of the sub‐Antarctic islands.

Funder

National Science Foundation, United Arab Emirates

Publisher

Wiley

Reference108 articles.

1. A new look at the statistical model identification

2. Apparecchio per raccogliere presto ed in gran numero piccoli Artropodi;Berlese A.;Redia,1905

3. The Importance of Scaling in Biodiversity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3