Body length changes for Atlantic salmon (Salmo salar) over five decades exhibit weak spatial synchrony over a broad latitudinal gradient

Author:

Imlay Tara L.1ORCID,Breau Cindy1,Dauphin Guillaume J. R.1ORCID,Chaput Gérald1,April Julien2,Douglas Scott1,Hogan J. Derek3,McWilliam Sherise3,Notte Daniela4,Robertson Martha J.5,Taylor Andrew4,Underhill Kari1,Weir Laura K.6

Affiliation:

1. Fisheries and Oceans Canada Moncton New Brunswick Canada

2. Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs Québec Québec Canada

3. Fisheries and Oceans Canada French Village New Brunswick Canada

4. Fisheries and Oceans Canada Dartmouth Nova Scotia Canada

5. Fisheries and Oceans Canada St. John's Newfoundland and Labrador Canada

6. Department of Biology Saint Mary's University Halifax Nova Scotia Canada

Abstract

AbstractUnderstanding the factors that drive spatial synchrony among populations or species is important for management and recovery of populations. The range‐wide declines in Atlantic salmon (Salmo salar) populations may be the result of broad‐scale changes in the marine environment. Salmon undergo rapid growth in the ocean; therefore changing marine conditions may affect body size and fecundity estimates used to evaluate whether stock reference points are met. Using a dataset that spanned five decades, 172,268 individuals, and 19 rivers throughout Eastern Canada, we investigated the occurrence of spatial synchrony in changes in the body size of returning wild adult Atlantic salmon. Body size was then related to conditions in the marine environment (i.e., climate indices, thermal habitat availability, food availability, density‐dependence, and fisheries exploitation rates) that may act on all populations during the ocean feeding phase of their life cycle. Body size increased during the 1980s and 1990s for salmon that returned to rivers after one (1SW) or two winters at sea (2SW); however, significant changes were only observed for 1SW and/or 2SW in some mid‐latitude and northern rivers (10/13 rivers with 10 of more years of data during these decades) and not in southern rivers (0/2), suggesting weak spatial synchrony across Eastern Canada. For 1SW salmon in nine rivers, body size was longer when fisheries exploitation rates were lower. For 2SW salmon, body size was longer when suitable thermal habitat was more abundant (significant for 3/8 rivers) and the Atlantic Multidecadal Oscillation was higher (i.e., warmer sea surface temperatures; significant for 4/8 rivers). Overall, the weak spatial synchrony and variable effects of covariates on body size across rivers suggest that changes in Atlantic salmon body size may not be solely driven by shared conditions in the marine environment. Regardless, body size changes may have consequences for population management and recovery through the relationship between size and fecundity.

Funder

Fisheries and Oceans Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3