What environmental and climatic factors influence multidecadal fire frequency?

Author:

Lindenmayer David1ORCID,Taylor Chris1,Blanchard Wade1,Zylstra Phil2,Evans Maldwyn John1ORCID

Affiliation:

1. Fenner School of Environment and Society The Australian National University Canberra ACT Australia

2. School of Molecular and Life Sciences Curtin University Perth Western Australia Australia

Abstract

AbstractFire is a key ecosystem process with more than half the world's land surface potentially subject to fire. A key aspect of fire ecology is the fire regime, with fire frequency an important component. Fire frequency appears to be increasing in some ecosystems, but decreasing in others. Such temporal and spatial variability in fire frequency highlights the importance of more effectively quantifying spatiotemporal changes in fire frequency for particular environments. We modeled changes in fire frequency over the past 40 years (1981–2020) in a 4.64 million ha area in Victoria, Australia. We quantified regional variation in the number of fires (hereafter termed fire frequency) during two 20‐year time periods (1981–2000 vs. 2001–2020), employing the Interim Biogeographic Regionalisation for Australia (IBRA), a standardized regionalization of Australia's terrestrial landscapes. We also quantified the climate and environmental factors influencing fire frequency in each IBRA subregion. Our empirical analyses revealed that fire frequency in Victoria was heterogeneous in both time and space. Wildfire frequency changed between 1981 and 2020, with the past 20 years (2001–2020) experiencing a substantially greater number of fires relative to the 20 years prior (1981–2000). Changes in fire frequency were not spatially uniform, with increases more pronounced in some IBRA subregions than others. Climate and topographic factors influenced the frequency of wildfires, but their effects manifested differently in different IBRA subregions. For example, fire frequency was associated with increasing rainfall deficit deviation in four IBRA subregions, but an opposite trend characterized two others. Associations between fire frequency and increasing temperature deviation also varied from negative to positive across subregions. We also found evidence of elevation, slope, and aspect effects, but these too varied between IBRA subregions. The complex spatiotemporal changes in fire frequency quantified in this study, and the complex between‐region differences in the factors associated with the number of fires, have major implications for biodiversity conservation, resource availability (e.g., timber yields), and ecosystem integrity. In ecosystems subjected to repeated fires at short intervals, new rapid detection and swift suppression technologies may be required to reduce the risks of ecosystem collapse as high‐severity wildfires increase in frequency.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference93 articles.

1. A human-driven decline in global burned area

2. Future climate risks from stress, insects and fire across US forests

3. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States

4. Banks J. C.1982.“The Use of Dendrochronology in the Interpretation of the Dynamics of the Snow Gum Forest.” PhD Thesis Department of Forestry The Australian National University Canberra.

5. Combating ecosystem collapse from the tropics to the Antarctic

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3