Sex similarities and divergences in systemic and muscle iron metabolism adaptations to extreme physical inactivity in rats

Author:

Horeau Mathieu12,Delalande Melissa1,Ropert Martine23,Leroyer Patricia2,Martin Brice1,Orfila Luz1,Loréal Olivier23,Derbré Frédéric1ORCID

Affiliation:

1. Laboratory “Movement Sport and Health Sciences” EA7470 University of Rennes/ENS Rennes France

2. INSERM, University of Rennes, INRAE, UMR 1317 Nutrition Metabolisms and Cancer (NuMeCan) Institute Rennes France

3. Elemental Analysis and Metabolism of Metals (AEM2) Platform Univ Rennes CHU Pontchaillou Rennes France

Abstract

AbstractBackgroundPrevious data in humans suggest that extreme physical inactivity (EPI) affects iron metabolism differently between sexes. Our objective was to deepen the underlying mechanisms by studying rats of both sexes exposed to hindlimb unloading (HU), the reference experimental model mimicking EPI.MethodsEight‐week‐old male and female Wistar rats were assigned to control (CTL) or hindlimb unloading (HU) conditions (n = 12/group). After 7 days of HU, serum, liver, spleen, and soleus muscle were removed. Iron parameters were measured in serum samples, and ICP‐MS was used to quantify iron in tissues. Iron metabolism genes and proteins were analysed by RT‐qPCR and Western blot.ResultsCompared with control males, control females exhibited higher iron concentrations in serum (+43.3%, p < 0.001), liver (LIC; +198%, P < 0.001), spleen (SIC; +76.1%, P < 0.001), and transferrin saturation (TS) in serum (+53.3%, P < 0.001), contrasting with previous observations in humans. HU rat males, but not females, exhibited an increase of LIC (+54% P < 0.001) and SIC (+30.1%, P = 0.023), along with a rise of H‐ferritin protein levels (+60.9% and +134%, respectively, in liver and spleen; P < 0.05) and a decrease of TFRC protein levels (−36%; −50%, respectively, P < 0.05). HU males also exhibited an increase of splenic HO‐1 and NRF2 mRNA levels, (p < 0.001), as well as HU females (P < 0.001). Concomitantly to muscle atrophy observed in HU animals, the iron concentration increased in soleus in females (+26.7, P = 0.004) while only a trend is observed in males (+17.5%, P = 0.088). In addition, the H‐ferritin and myoglobin protein levels in soleus were increased in males (+748%, P < 0.001, +22%, P = 0.011, respectively) and in females (+369%, P < 0.001, +21.9%, P = 0.007, respectively), whereas TFRC and ferroportin (FPN) protein levels were reduced in males (−68.9%, P < 0.001, −76.8%, P < 0.001, respectively) and females (−75.9%, P < 0.001, −62.9%, P < 0.001, respectively). Interestingly, in both sexes, heme exporter FLVCR1 mRNA increased in soleus, while protein levels decreased (−39.9% for males P = 0.010 and −49.1% for females P < 0.001).ConclusionsTaken together, these data support that, in rats (1) extreme physical inactivity differently impacts the distribution of iron in both sexes, (2) splenic erythrophagocytosis could play a role in this iron misdistribution. The higher iron concentrations in atrophied soleus from both sexes are associated with a decoupling between the increase in iron storage proteins (i.e., ferritin and myoglobin) and the decrease in levels of iron export proteins (i.e., FPN and FLVCR1), thus supporting an iron sequestration in skeletal muscle under extreme physical inactivity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3