Dynamic hierarchical state space forecasting

Author:

Liu Ziyue1ORCID,Guo Wensheng2

Affiliation:

1. Department of Biostatistics and Health Data Science Indiana University School of Medicine Indianapolis Indiana

2. Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Philadelphia Pennsylvania

Abstract

In this paper, we aim to both borrow information from existing units and incorporate the target unit's history data in time series forecasting. We consider a situation when we have time series data from multiple units that share similar patterns when aligned in terms of an internal time. The internal time is defined as an index according to evolving features of interest. When mapped back to the calendar time, these time series can span different time intervals that can include the future calendar time of the targeted unit, over which we can borrow the information from other units in forecasting the targeted unit. We first build a hierarchical state space model for the multiple time series data in terms of the internal time, where the shared components capture the similarities among different units while allowing for unit‐specific deviations. A conditional state space model is then constructed to incorporate the information of existing units as the prior information in forecasting the targeted unit. By running the Kalman filtering based on the conditional state space model on the targeted unit, we incorporate both the information from the other units and the history of the targeted unit. The forecasts are then transformed from internal time back into calendar time for ease of interpretation. A simulation study is conducted to evaluate the finite sample performance. Forecasting state‐level new COVID‐19 cases in United States is used for illustration.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3