Affiliation:
1. School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
2. Department of Nuclear Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
3. Department of Neurovascular Center, Changhai Hospital Naval Medical University Shanghai China
4. Department of Neurology & Institute of Neurology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
5. Collaborative Innovation Center for Molecular Imaging of Precision Medicine Ruijin Center Shanghai China
Abstract
AbstractDisruptions of neural metabolism and function occur in parallel during Alzheimer's disease (AD). While many studies have shown diverse metabolic‐functional relationships in specific brain regions, much less is known about how large‐scale network‐level functional activity is associated with the topology of metabolism in AD. In this study, we took the advantages of simultaneous PET/MRI and multivariate analyses to investigate the associations between AD‐related stereotypical spatial patterns (topographies) of glucose metabolism, measured by fluorodeoxyglucose PET, and functional connectivity, measured by resting‐state functional MRI. A total of 101 participants, including 37 patients with AD, 25 patients with mild cognitive impairment (MCI), and 39 cognitively normal controls, underwent PET/MRI scans and cognitive assessments. Three pairs of distinct but optimally correlated metabolic and functional topographies were identified, encompassing large‐scale networks including the default‐mode, executive and control, salience, attention, and subcortical networks. Importantly, the metabolic‐functional associations were not only limited to one‐to‐one‐corresponding regions, but also occur in remote and non‐overlapping regions. Furthermore, both glucose metabolism and functional connectivity, as well as their linkages, exhibited various degrees of disruptions in patients with MCI and AD, and were correlated with cognitive decline. In conclusion, our results support distributed and heterogeneous topographic associations between metabolism and function, which are jeopardized by AD. Findings of this study may deepen our understanding of the pathological mechanism of AD through the perspectives of both local energy efficiency and long‐term interactions between synaptic disruption and functional disconnection contributing to the clinical symptomatology in AD.
Funder
National Natural Science Foundation of China
Shanghai Municipal Health Commission
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献