Exploring of novel reverse thermally induced phase separation process based on preparation and characterization of polysulfate ultrafiltration membranes with bicontinuous structure

Author:

Wang Wei12ORCID,Sun Linghao12,Wang Jiaqi12,Zeng Fanfu3,Xu Baiyu3

Affiliation:

1. School of Material Science and Engineering Tiangong University Tianjin China

2. State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin China

3. Delan Water Technology Co. Wulumuqi China

Abstract

AbstractContaminated water sources from various industries pose severe environmental challenges due to their complex compositions, high toxicity, and fluctuating qualities. This study introduces a groundbreaking strategy for fabricating advanced polysulfate (PSE) ultrafiltration membranes using a novel reverse thermally induced phase separation (RTIPS) process. By manipulating the cloud point through the DMAc/DEG solvent/nonsolvent system, our work innovatively controls membrane microstructure, overcoming limitations of conventional nonsolvent‐induced phase separation (NIPS). Our findings reveal that RTIPS, when employed above the cloud point, yields PSE membranes with a unique bicontinuous sponge‐like structure, significantly improving upon conventional NIPS products. Specifically, the optimized RTIPS membranes exhibit enhanced pure water flux (916.23 vs. 336.23 LMH), larger pore sizes (0.083 vs. 0.054 μm), increased tensile strength (1.32 vs. 0.84 MPa), and improved fouling resistance (FRR 65.5% vs. 55.2%). This research pioneers a facile yet potent method for tailoring membrane properties, achieving a balance between permeability, mechanical stability, and filtration efficacy. The demonstrated success of RTIPS in enhancing PSE membrane performance not only contributes to the development of high‐performance water treatment technologies but also charts a new course in membrane science, offering a promising avenue for sustainable wastewater management solutions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3