Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity

Author:

Yin Lijuan1,Li Jingjing2,Liao Chun-Peng3,Jason Wu Boyang2ORCID

Affiliation:

1. Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA

2. Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA

3. Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA

Abstract

Abstract Monoamine oxidases (MAOs) degrade a number of biogenic and dietary amines, including monoamine neurotransmitters, and play an essential role in many biological processes. Neurotransmitters and related neural events have been shown to participate in the development, differentiation, and maintenance of diverse tissues and organs by regulating the specialized cellular function and morphological structures of innervated organs such as the prostate. Here we show that mice lacking both MAO isoforms, MAOA and MAOB, exhibit smaller prostate mass and develop epithelial atrophy in the ventral and dorsolateral prostates. The cellular composition of prostate epithelium showed reduced CK5+ or p63+ basal cells, accompanied by lower Sca-1 expression in p63+ basal cells, but intact differentiated CK8+ luminal cells in MAOA/B-deficient mouse prostates. MAOA/B ablation also decreased epithelial cell proliferation without affecting cell apoptosis in mouse prostates. Using a human prostate epithelial cell line, we found that stable knockdown of MAOA and MAOB impaired the capacity of prostate stem cells to form spheres, coinciding with a reduced CD133+/CD44+/CD24− stem cell population and less expression of CK5 and select stem cell markers, including ALDH1A1, TROP2, and CD166. Alternative pharmacological inhibition of MAOs also repressed prostate cell stemness. In addition, we found elevated expression of MAOA and MAOB in epithelial and/or stromal components of human prostate hyperplasia samples compared with normal prostate tissues. Taken together, our findings reveal critical roles for MAOs in the regulation of prostate basal progenitor cells and prostate maintenance.

Funder

U.S. Department of Defense PCRP

U.S. Department of Defense

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3