Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia

Author:

Geenjaar Eloy P.T.12ORCID,Lewis Noah L.23ORCID,Fedorov Alex12,Wu Lei2ORCID,Ford Judith M.45,Preda Adrian6,Plis Sergey M.27,Calhoun Vince D.12378

Affiliation:

1. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia USA

2. Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory Atlanta Georgia USA

3. School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA

4. San Francisco Veterans Affairs Medical Center San Francisco California USA

5. Department of Psychiatry and Behavioral Sciences University of California San Francisco San Francisco California USA

6. Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA

7. Department of Computer Science Georgia State University Atlanta Georgia USA

8. Department of Psychology Georgia State University Atlanta Georgia USA

Abstract

AbstractThis work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non‐linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual‐sensorimotor connectivity for schizophrenia patients for the FA‐sFNC and sMRI‐sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel‐based morphometry strength in the superior frontal lobe as found in the FA‐sFNC, sMRI‐FA, and sMRI‐ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact.

Funder

National Science Foundation

National Institutes of Health

Georgia Institute of Technology

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3