Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude‐only fMRI data

Author:

Zhang Chao‐Ying1,Lin Qiu‐Hua1ORCID,Niu Yan‐Wei1,Li Wei‐Xing1,Gong Xiao‐Feng1,Cong Fengyu23,Wang Yu‐Ping4,Calhoun Vince D.5

Affiliation:

1. School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering Dalian University of Technology Dalian China

2. School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering Dalian University of Technology Dalian China

3. Faculty of Information Technology University of Jyväskylä Jyväskylä Finland

4. Tulane University Biomedical Engineering Department New Orleans Louisiana USA

5. Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology Emory University Atlanta Georgia USA

Abstract

AbstractBrain networks extracted by independent component analysis (ICA) from magnitude‐only fMRI data are usually denoised using various amplitude‐based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex‐valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude‐only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex‐valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex‐valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex‐valued fMRI, this framework is generalized to work with magnitude‐only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex‐valued data from University of New Mexico and magnitude‐only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude‐only fMRI data in terms of retaining more BOLD‐related activity and fewer unwanted voxels, compared with amplitude‐based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.

Funder

National Natural Science Foundation of China

National Science Foundation

National Institutes of Health

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3