Fire frequency, as well as stress response and developmental gene control serotiny level variation in a widespread pioneer Mediterranean conifer, Pinus halepensis

Author:

Romero Bastien1ORCID,Scotti Ivan2,Fady Bruno2ORCID,Ganteaume Anne1ORCID

Affiliation:

1. INRAE, Aix Marseille Univ, RECOVER Aix‐en‐Provence France

2. INRAE, URFM Avignon France

Abstract

AbstractMany plants undergo adaptation to fire. Yet, as global change is increasing fire frequency worldwide, our understanding of the genetics of adaptation to fire is still limited. We studied the genetic basis of serotiny (the ability to disseminate seeds exclusively after fire) in the widespread, pioneer Mediterranean conifer Pinus halepensis Mill., by linking individual variation in serotiny presence and level to fire frequency and to genetic polymorphism in natural populations. After filtering steps, 885 single nucleotide polymorphisms (SNPs) out of 8000 SNPs used for genotyping were implemented to perform an in situ association study between genotypes and serotiny presence and level. To identify serotiny‐associated loci, we performed random forest analyses of the effect of SNPs on serotiny levels, while controlling for tree size, frequency of wildfires, and background environmental parameters. Serotiny showed a bimodal distribution, with serotinous trees more frequent in populations exposed to fire in their recent history. Twenty‐two SNPs found in genes involved in stress tolerance were associated with the presence‐absence of serotiny while 37 found in genes controlling for flowering were associated with continuous serotiny variation. This study shows the high potential of P. halepensis to adapt to changing fire regimes, benefiting from a large and flexible genetic basis of trait variation.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference99 articles.

1. Alexa A. &Rahnenfuhrer J.(2020).TopGO: Enrichment analysis for gene ontology. R package version 2.40.0.https://bioconductor.org/packages/release/bioc/html/topGO.html

2. Surviving fires — vegetative and reproductive responses

3. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids

4. Little evidence for fire-adapted plant traits in Mediterranean climate regions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3