On semiparametric accelerated failure time models with time‐varying covariates: A maximum penalised likelihood estimation

Author:

Ma Ding1ORCID,Ma Jun1ORCID,Graham Petra L.1ORCID

Affiliation:

1. School of Mathematical and Physical Sciences Macquarie University Sydney Australia

Abstract

The accelerated failure time (AFT) model offers an important and useful alternative to the conventional Cox proportional hazards model, particularly when the proportional hazards assumption for a Cox model is violated. Since an AFT model is basically a log‐linear model, meaningful interpretations of covariate effects on failure times can be made directly. However, estimation of a semiparametric AFT model imposes computational challenges even when it only has time‐fixed covariates, and the situation becomes much more complicated when time‐varying covariates are included. In this paper, we propose a penalised likelihood approach to estimate the semiparametric AFT model with right‐censored failure time, where both time‐fixed and time‐varying covariates are permitted. We adopt the Gaussian basis functions to construct a smooth approximation to the nonparametric baseline hazard. This model fitting method requires a constrained optimisation approach. A comprehensive simulation study is conducted to demonstrate the performance of the proposed method. An application of our method to a motor neuron disease data set is provided.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3