Biophysical investigation of interactions between SARS‐CoV‐2 spike protein and neuropilin‐1

Author:

Hou Decheng12ORCID,Cao Wenpeng1,Kim Seonghan1ORCID,Cui Xinyu12,Ziarnik Matthew1,Im Wonpil13ORCID,Zhang X. Frank12ORCID

Affiliation:

1. Department of Bioengineering Lehigh University Bethlehem Pennsylvania USA

2. Department of Biomedical Engineering University of Massachusetts Amherst Amherst Massachusetts USA

3. Departments of Biological Sciences, Chemistry, and Computer Science and Engineering Lehigh University Bethlehem USA

Abstract

AbstractRecent studies have suggested that neuropilin‐1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS‐CoV‐2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS‐CoV‐2 spike (S) fragments, including the receptor‐binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1‐RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD‐ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS‐CoV‐2 S trimer with a dissociation rate of 0.87 s−1, four times lower than the dissociation rate of 3.65 s−1 between NRP1 and RBD. Moreover, additional experiments show that RBD‐neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS‐CoV‐2 attachment to human cells, and the neutralizing antibodies targeting SARS‐CoV‐2 RBD can reduce the binding between SARS‐CoV‐2 and NRP1.

Funder

National Institutes of Health

Lehigh University

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3