Waste‐derived low‐grade glycerol purification and recovery from biorefineries: an experimental investigation

Author:

Attarbachi Taha12,Kingsley Martin2,Spallina Vincenzo1ORCID

Affiliation:

1. Department of Chemical Engineering University of Manchester Manchester UK

2. Argent Energy Ltd Ellesmere Port UK

Abstract

AbstractA combination of different physio‐chemical treatment steps was applied to purify industrially derived crude glycerol at laboratory scale. The full process included acid–base treatments, phase separation, and adsorption, and the glycerol purity and recovery were optimized by varying the pH during saponification and acidification, the solvent‐to‐glycerol ratio, and type of base used in the process to enhance both. The testing campaign resulted in a final purity of up to 87% wt starting from a very low‐quality ‘end‐of‐life’ waste glycerol sampled from different refineries. The net glycerol recovery at laboratory scale reached 42% of the initial glycerol in the feedstock and the maximum ash removal exceeded 90% given the low quality of the feedstock and high content of impurities and the attempt to achieve high glycerol recovery. The experiment showed that mild operations such as saponification with KOH (pH of 8), acidification with H3PO4 (pH of 6), an ideal 2‐propanol to glycerol volume ratio equal to 3 and potassium hydroxide as a base for the neutralisation step were the optimum conditions despite the differences between samples. The sequence of the processes proposed was therefore considered a viable option to treat any kind of crude glycerol to make it profitable for fuel and chemical applications.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3