Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions

Author:

Shrestha Raj K.1ORCID,Jacinthe Pierre‐Andre2,Lal Rattan3,Lorenz Klaus3,Singh Maninder P.4,Demyan Scott M.5,Ren Wei6,Lindsey Laura E.1ORCID

Affiliation:

1. Horticulture and Crop Science The Ohio State University Columbus Ohio USA

2. Department of Earth Sciences Indiana University Purdue University Indianapolis Indianapolis Indiana USA

3. CFAES Rattan Lal Center for Carbon Management and Sequestration The Ohio State University Columbus Ohio USA

4. Department of Plant, Soil and Microbial Sciences Michigan State University East Lansing Michigan USA

5. School of Environment and Natural Resources The Ohio State University Columbus Ohio USA

6. Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky USA

Abstract

AbstractBiochar is one of the few nature‐based technologies with potential to help achieve net‐zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co‐benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field‐based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2O) by 18% and methane (CH4) by 3% but increased carbon dioxide (CO2) by 1.9%. When biochar was combined with N‐fertilizer, it reduced CO2, CH4, and N2O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long‐term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.

Funder

Alfred P. Sloan Foundation

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3