Benthic nitrate removal capacity in marine mangroves of Guadeloupe, Lesser Antilles

Author:

Laverman Anniet M.1ORCID,Sebilo Mathieu2ORCID,Tocny Jennifer3,Gros Olivier3ORCID

Affiliation:

1. CNRS University Rennes 1 Rennes France

2. CNRS, INREA, IRD, UPD, UPEC Institute of Ecology and Environmental Sciences–Paris IEES, Sorbonne Université France

3. Institut de Systématique, Evolution, Biodiversité, Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE Université des Antilles Pointe‐à‐Pitre France

Abstract

AbstractMangrove sediments are known to be potentially active reducing zones for nitrogen removal. The goal of this work was to investigate the potential for nitrate reduction in marine mangrove sediments along a canal impacted by anthropogenic activity (Guadeloupe, Lesser Antilles). To this end, the effect of nitrate concentration, organic carbon load, and hydraulic retention time was assessed as factors affecting these nitrate reduction rates. Nitrate reduction potential was determined using flow‐through reactors in marine mangrove sediments collected along “The Canal des Rotours” in Guadeloupe. Potential nitrate reduction rates, in the presence of indigenous organic carbon, generally increased upon increasing nitrate supply from around 120 nmol cm−3 h−1 (low nitrate) up to 378 nmol cm−3 h−1 (high nitrate). The potential for nitrate reduction increased significantly with the addition of mangrove leaves, whereas the addition of simple, easily degradable carbon (acetate) resulted in an almost fivefold increase in nitrate reduction rates (up to 748 nmol cm−3 h−1). The hydraulic retention time also had an impact on the nitrate reducing capacity due to an increased contact time between nitrate and the benthic microbial community. Marine mangrove sediments have a high potential to mitigate nitrogen pollution, mainly governed by the presence of large amounts of degradable carbon in the form of litter. The mangrove sediments from this Caribbean island, currently exposed to a small tidal effect, could increase their nitrate elimination capacities due to prolonged water retention via engineering.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3