Subsurface phosphorus and nitrogen loss following liquid dairy manure and commercial fertilizer application on a clay soil in northwest Ohio

Author:

King Kevin W.1ORCID,Hanrahan Brittany R.1ORCID,LaBarge Gregory A.2,Stinner Jedediah H.1,Rumora Kathryne1

Affiliation:

1. USDA‐ARS Soil Drainage Research Unit Columbus Ohio USA

2. Ohio State Extension The Ohio State University Columbus Ohio USA

Abstract

AbstractNutrient source has been the focus of much debate regarding the re‐eutrophication of Lake Erie, despite that only 20% of nutrients applied to crops in the Western Lake Erie Basin (WLEB) originate from organic sources. However, limited data and assessments exist on the subsurface tile drainage water quality comparison between organic (liquid dairy manure) and commercial (mono‐ammonium phosphate [MAP]) sources in crop production systems. Subsurface tile drainage, dissolved reactive phosphorus (DRP) and total phosphorus (TP) losses in tile drainage discharge following equal phosphorus (P) based applications of liquid dairy manure and MAP were assessed using a before‐after control‐impact design and 4 years of data from a paired field system located in northwest Ohio. Nitrate‐nitrogen (NO3‐N ) and total nitrogen (TN) losses were also examined to supplement the P findings; however, due to dissimilar nitrogen application rates, losses were assessed in a different context. No significant differences (p > 0.05) were detected in drainage discharge volumes or TP loads between the control and impact sites. However, statistically significant increases (p < 0.05) were measured for mean daily DRP, NO3‐N, and TN loads from the dairy manure site. While significant, mean daily DRP differences between commercial (MAP) and liquid dairy manure treatments were only on the order of 0.01 g DRP ha−1. Assuming current manure application extent and rates, when accumulated annually across the WLEB watershed, these losses are equivalent to less than 1% of target loads. These findings also help to inform nutrient management stewardship as it relates to nutrient source. Furthermore, additional research across a range of soil characteristics and cropping managements should be explored as well as the impacts of other livestock manure nutrients.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3