Denitrification potential of surface soils of constructed wetlands in Newtown Creek, an urban superfund site

Author:

Govinda Nirmela1,Groffman Peter M.12ORCID,Durand Sarah E.3,Zarnoch Chester B.45,Elkins Willis6

Affiliation:

1. Department of Earth and Environmental Sciences Brooklyn College of the City University of New York Brooklyn New York USA

2. Advanced Science Research Center at the Graduate Center City University of New York New York New York USA

3. LaGuardia Community College of the City University of New York Queens New York USA

4. Department of Natural Sciences Baruch College of the City University of New York New York New York USA

5. The Graduate Center of the City University of New York, Ph.D. Program in Biology New York New York USA

6. Newtown Creek Alliance Brooklyn New York USA

Abstract

AbstractDenitrification, the anaerobic microbial conversion of nitrate (NO3), a common water pollutant, to nitrogen (N) gases, is often high in the soil of natural wetlands. In areas where natural wetlands have been degraded or destroyed, constructed and restored wetlands have been used to restore ecosystem services like denitrification. Thus, denitrification in restored and constructed wetlands could play an important role in treating anthropogenic N sources such as combined sewer overflow discharges which can be high in NO3. In this study, we measured denitrification potential using an anaerobic slurry assay and made a suite of ancillary measurements (soil moisture content, microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools, and soil respiration) in four constructed salt marsh wetlands, and a series of wetland habitat basins in Newtown Creek, NY, an urban superfund site. Samples were also taken from natural salt marshes located at Paerdegat Basin, Jamaica Bay, NY. Our results show that constructedSpartina alternifloramarshes in ultra‐urban Newtown Creek support denitrification potential equivalent to rates of natural marshes in Jamaica Bay and reference marshes in other urban estuaries. There were significant positive correlations between microbial biomass C and N content and organic matter content and denitrification potential. Results suggest that constructed wetlands can support wetland vegetation, soils, and microbial life and contribute to N removal under ultra‐urban conditions.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3