Are all copepods the same? Variation in copepod stoichiometry with taxonomy, ontogeny, latitude, and habitat

Author:

Herstoff Emily M.1ORCID,Meunier Cédric L.2ORCID,Boersma Maarten23ORCID,Baines Stephen1ORCID

Affiliation:

1. Department of Ecology and Evolution Stony Brook University Stony Brook New York USA

2. Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und Meeresforschung Biologische Anstalt Helgoland Helgoland Germany

3. FB2 University of Bremen Bremen Germany

Abstract

AbstractCopepods are the most abundant metazoans on Earth, driving cycles of key elements in aquatic systems, most prominently carbon (C), nitrogen (N), and phosphorus (P). One key factor determining nutrient cycling is copepod somatic stoichiometry, which can reflect ecological strategy. We conducted a systematic review that updates the seminal work of Båmstedt (1986) by summarizing the effects of latitude, habitat, life history stage, and taxonomy on C:N, C:P, and N:P ratios of field‐collected copepods. We found that differences among copepod families accounted for the greatest variation, with the Rhincalanidae and Diaptomidae being particularly C‐rich, while the Calanidae were more N‐ and P‐rich. Copepod C:N was higher in inland waters compared with animals from marine environments in both copepodites and adult females, matching the higher C content of seston in many inland freshwaters. For both copepodites and adult females, mid‐latitude animals had higher C:N and C:P than high‐latitude animals, which matched predictions based on the availability of nutrients or adaptation to cold environments. More data must be gathered to fill gaps in our knowledge of copepod stoichiometry, focusing particularly on younger life stages, non‐calanoids, low and high latitudes, the southern hemisphere, and estuarine and some inland water habitats, including large lakes. Such information will help better parameterize models of aquatic ecosystems and improve our understanding of how copepods influence consumer‐driven nutrient cycling and food web dynamics.

Funder

Bundesministerium für Bildung und Forschung

National Science Foundation Graduate Research Fellowship Program

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3