Optimal consensus control for double‐integrator multiagent systems with unknown dynamics using adaptive dynamic programming

Author:

Zhang Qi1,Yang Yang1ORCID,Song Xue1,Xie Xiaoran1,Zhu Naibo2,Liu Zhi1

Affiliation:

1. The College of Electronic and Information Engineering Changchun University of Science and Technology Jilin Changchun China

2. Unit 32801 of the Chinese People's Liberation Army Beijing 100091 China

Abstract

AbstractThe purpose of this article is to utilize adaptive dynamic programming to solve an optimal consensus problem for double‐integrator multiagent systems with completely unknown dynamics. In double‐integrator multiagent systems, flocking algorithms that neglect agents' inertial effect can cause unstable group behavior. Despite the fact that an inertias‐independent protocol exists, the design of its control law is decided by dynamics and inertia. However, inertia in reality is difficult to measure accurately, therefore, the control gain in the consensus protocol was solved by developing adaptive dynamic programming to enable the double‐integrator systems to ensure the consensus of the agents in the presence of entirely unknown dynamics. Firstly, we demonstrate in a typical example how flocking algorithms that ignore the inertial effect of agents can lead to unstable group behavior. And even though the protocol is independent of inertia, the control gain depends quite strongly on the inertia and dynamic of the agent. Then, to address these shortcomings, an online policy iteration‐based adaptive dynamic programming is designed to tackle the challenge of double‐integrator multiagent systems without dynamics. Finally, simulation results are shown to prove how effective the proposed approach is.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3