Categorisation of continuous covariates for stratified randomisation: How should we adjust?

Author:

Sullivan Thomas R.12ORCID,Morris Tim P.3ORCID,Kahan Brennan C.3ORCID,Cuthbert Alana R.1ORCID,Yelland Lisa N.12ORCID

Affiliation:

1. Women and Kids Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia

2. School of Public Health The University of Adelaide Adelaide South Australia Australia

3. MRC Clinical Trials Unit UCL London UK

Abstract

To obtain valid inference following stratified randomisation, treatment effects should be estimated with adjustment for stratification variables. Stratification sometimes requires categorisation of a continuous prognostic variable (eg, age), which raises the question: should adjustment be based on randomisation categories or underlying continuous values? In practice, adjustment for randomisation categories is more common. We reviewed trials published in general medical journals and found none of the 32 trials that stratified randomisation based on a continuous variable adjusted for continuous values in the primary analysis. Using data simulation, this article evaluates the performance of different adjustment strategies for continuous and binary outcomes where the covariate‐outcome relationship (via the link function) was either linear or non‐linear. Given the utility of covariate adjustment for addressing missing data, we also considered settings with complete or missing outcome data. Analysis methods included linear or logistic regression with no adjustment for the stratification variable, adjustment for randomisation categories, or adjustment for continuous values assuming a linear covariate‐outcome relationship or allowing for non‐linearity using fractional polynomials or restricted cubic splines. Unadjusted analysis performed poorly throughout. Adjustment approaches that misspecified the underlying covariate‐outcome relationship were less powerful and, alarmingly, biased in settings where the stratification variable predicted missing outcome data. Adjustment for randomisation categories tends to involve the highest degree of misspecification, and so should be avoided in practice. To guard against misspecification, we recommend use of flexible approaches such as fractional polynomials and restricted cubic splines when adjusting for continuous stratification variables in randomised trials.

Funder

Medical Research Council

National Health and Medical Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3